Mark scheme - Electrical Circuits

Questio n	Answer/Indicative content	Mark s	Guidance
1	A	1	
	Total	1	
2	B	1	
	Total	1	
3	A	1	Examiner's Comments This is a question on a potential divider circuit and a sketch of the correct $V-R$ graph. Unfortunately, the distractor B was a bit too strong. A is the correct sketch. When $R=0, V$ had to be zero too. Most candidates did write down the correct potential divider expression for V, but then did not acknowledge that V cannot be directly proportional to R - the straight-line graph through the origin could not be the correct answer. It was a choice between \mathbf{A} or \mathbf{B}, and by the brief reasoning above, the answer had to be \mathbf{A}.
	Total	1	
4	A	1	
	Total	1	
5	D	1	
	Total	1	
6	A	1	
	Total	1	
7	C	1	
	Total	1	
8	C	1	Examiner's Comments This was a well-answered question with most candidates demonstrating excellent knowledge of resistors in series and parallel combination. On many scripts, there was hardly any working shown. The two 10.0Ω resistors in parallel gave a combined resistance of 5.0 Ω. This added to the series resistor of 20.0Ω gives the correct answer of 25.0Ω. The most popular distractor was \mathbf{D} - where all the resistance values were simply added together.
	Total	1	
9	D	1	

4.3 Electrical Circuits

	Total	1	
1	C	1	
	Total	1	
1	A	1	
	Total	1	
1	A	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions.
	Total	1	
1 3	D	1	
	Total	1	
1	D	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions.
	Total	1	
1	B	1	Examiner's Comments All of the questions showed a positive discrimination, and the less able candidates could access the easier questions. The questions in Section A do require careful reading and scrutiny. Candidates are advised to reflect carefully before recording their response in the box. Candidates must endeavour to use a variety of quick techniques when answering multiple choice questions. The candidates to demonstrate their knowledge and understanding of physics.
	Total	1	
1	D	1	
	Total	1	
1 7	C	1	

4.3 Electrical Circuits

| | | Total | | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- |$|$| 1 | |
| :--- | :--- |
| 8 | D |

4.3 Electrical Circuits

			had been shown by them, and leading to the correct numerical value this was credited by examiners. However, this cannot be guaranteed to occur in other cases and candidates are to be encouraged to put only the correct letter.
	Total	1	
$\begin{aligned} & 2 \\ & 6 \end{aligned}$	C	1	
	Total	1	
$\begin{aligned} & 2 \\ & 7 \end{aligned}$	B	1	Examiner's Comments Candidates answered this question well. A range of techniques could be used to get to the correct answer \mathbf{B}. This is illustrated by the two exemplars below. Exemplar 2 Lamp \mathbf{X} emits a power of 2:0 W and lamp Y emits a power of 6.0W. What is the potential difference across the lamp \mathbf{X} ? A 1.0 V B $\quad 4.0 \mathrm{~V}$ $p=I V$ $P \propto V$ C $\quad 12 \mathrm{~V}$ D 16 V Your answer B \square This shows the thought processes of a top-end candidate. The current in the series circuit is constant, hence the potential difference must be proportional to the power dissipation. These two lines is all it took for this candidate to identify the correct answer B.

				Lamp X emits a power of 2.0 W and lamp Y emits a power of 6.0 W . What is the potential difference across the lamp \mathbf{X} ? A 1.0 V $P=I V$ $P=I V$ B $\quad 4.0 \mathrm{~V}$ $\frac{5}{16} \frac{5}{2} I$ C $\quad 12 \mathrm{~V}$ $V=\frac{D}{T}$ D 16 V $=\frac{2}{3}$ Your answer B \square $=4 v$ Here's another equally valid technique, which may have been a bit time-consuming for this grade D candidate. The total power dissipated has been used to determine the current in the circuit. The correct value of 4.0 V across lamp \mathbf{X} has been calculated using this current and the equation $P=V I$. It is worth noting the sensible approach of annotating the figure. This would have helped to steer away from the popular distractor C.
		Total	1	
2		D	1	Examiner's Comments The correct response is \mathbf{D}. This question also proved to be challenging as not many candidates will have come across this style of circuit before. Therefore in most cases, it will have to have been worked out from application of conventional current flow. It would likely be evident that LED \mathbf{Q} is lit, probably accounting for the very few candidates selecting response B. Many candidates incorrectly selected response \mathbf{A}, presumably as its polarity is the same as \mathbf{Q}.
		Total	1	
$\begin{array}{\|l} 2 \\ 9 \end{array}$		B	1	
		Total	1	
$\begin{aligned} & 3 \\ & 0 \end{aligned}$		A	1	
		Total	1	
3 1	a	1. λ 2. $\frac{3 \lambda}{2}$ or 1.5λ	B1 B1	Examiner's Comments This was well answered with few responses referring to degrees. Some candidates gave generalised answers in terms of n. Other candidates thought it was the third minima.

\begin{tabular}{|c|c|c|c|c|}
\hline \& b \& \begin{tabular}{l}
\(\lambda=\frac{a x}{D}\) stated and \(D\) and \(\lambda\) are constants. \\
Separation decreases (AW)
\end{tabular} \& M1 \& \begin{tabular}{l}
Allow \(x \propto a^{-1}\) \\
Allow other correct answers, e.g. in terms of path difference and angles \\
Examiner's Comments \\
Candidates needed to explain that the fringe spacing was inversely proportional to the slit spacing - this was often missing. Candidates should be encouraged to identify the constants in any expression when answering this type of question.
\end{tabular} \\
\hline \& \& Total \& 4 \& \\
\hline 3
2 \& a \& \[
\begin{aligned}
\& V=\frac{R}{R+0.25 R} \times 6.0 \\
\& V=4.8(\mathrm{~V})
\end{aligned}
\] \& C1
A1 \& Allow other correct methods. \\
\hline \& b \& \begin{tabular}{l}
The total resistance of the voltmeter and resistor in parallel is less than \(R\). (AW) \\
A suitable alternative device stated, e.g. digital voltmeter, oscilloscope or data-logger (connected to a laptop).
\end{tabular} \& B1
B1 \& \\
\hline \& \& Total \& 4 \& \\
\hline 3
3 \& a \& current \(=0.01(\mathrm{~A})\)
\[
\text { p.d. }=0.01 \times 50(=0.50 \mathrm{~V})
\] \& M1
A1 \& \begin{tabular}{l}
Examiner's Comments \\
This was an accessible question on determining the p.d. across the LED using the data from Fig. 19.2. The universal approach was short and precise: \(V=0.01 \times 50=0.50 \mathrm{~V}\). However, a significant number of candidates used a longer route involving the potential divider rule and the \(250 \Omega\) resistance of the LED.
\end{tabular} \\
\hline \& b \& \[
\begin{aligned}
\& \left(V_{75}=0.5+\mathbf{2 . 5}(\mathrm{V}) \text { or }\left(R_{\text {LED }}\right)=\mathbf{2 5 0}\right. \\
\& (\Omega) \text { or }\left(R_{\mathrm{P}}=60(\Omega)\right. \\
\& \left(I_{100}=\right) 0.05(\mathrm{~A}) \\
\& (E=3.0+0.05 \times 100) \\
\& E=8.0(\mathrm{~V})
\end{aligned}
\] \& C1
C1

A1 \& | Allow other correct methods |
| :--- |
| Note there is no ECF from (a) |
| Allow 1 SF for the p.d. of $3(\mathrm{~V})$ |
| There is no ECF here from wrong physics (XP) from the parallel network |
| Allow 1 SF answer of 8 |
| Examiner's Comments |
| The analysis of the circuit proved to be problematic with most of the candidates getting as far as calculating either the resistance of the LED as 250Ω or the p.d. across the LED-50 Ω resistor combination as 3.0 V . The stages thereafter demonstrated all the usual misconceptions; these are summarised later. About a quarter of the candidates produced flawless solutions using a range of techniques |

\hline
\end{tabular}

				from Kirchhoff's two laws to potential dividers. The simplest solution had the correct current of 0.050 A in the 100Ω resistor, followed by the correct value of the e.m.f. of 8.0 V . This type of solution is shown in exemplar 7. Misconception These were the most common errors made in calculating the e.m.f. of the power supply. - Calculating the total resistance of the parallel network by omitting the resistance of the LED. - The current in the 100Ω resistor was the same as the current of 0.010 A in the LED. - The current in the 100Ω resistor was the same as the current of 0.040 A in the 75Ω resistor. - Using the potential divider equation by completely omitting the LED-50 Ω resistor series network. Exemplar 7 $\begin{array}{ll}\text { (b) Calculate the e.m.f. E of the power supply. } \\ R=\frac{2.5}{0.01}=250 \Omega & 0.04+0.01=0.05 \\ 50+250=300 & 0.5+2.5+5=8 \mathrm{~V} \\ \frac{300}{75}=4 & \\ 4 \times 0.01=0.04 & E=\ldots . ~\end{array} \quad \begin{array}{ll} & \end{array}$ This exemplar shows a perfect response from a middle-grade candidate. The response should have been written to 2 SF . However, because the answer was 8.0 V , a 1 SF response was allowed without incurring any penalty.
		Total	5	
		Sum of e.m.f(s) is equal to the sum of p.d.(s) (in a loop of a circuit) Energy is conserved	B1 B1	Allow total / Σ instead of 'sum' Allow voltage instead of p.d. Notsum of $I R$......, unless I and R are defined Expect 'sum' at least once in the statement Not $\Sigma E=\Sigma V$, unless V and E are defined Examiner's Comments Many candidates jumbled up the first and second laws, but most candidates gave perfect answers. It was quite common to see hybrid statements such as 'sum of e.m.f.s at a point = sum of p.d.s coming out of the same point'. Most did know that energy was conserved, but other incorrect suggestions were charge, current and voltage. The question discriminated well and rewarded those candidates that had learnt their definitions.

				This incorrect value has then been allowed through subsequent calculations. Two marks have been gained even though the final answer is incorrect. It is worth remembering the knowing your physics will always pay dividends.
		Total	2	
3 7		(When two or more waves meet at a point) the resultant displacement is equal to the sum of the displacements of the (individual) waves.	B1	Allow: net / total for 'resultant' Not amplitude Examiner's Comments This was poorly answered. Candidates gave confused answers, often referring to constructive and destructive interference. Most candidates had the idea that the waves needed to be added in some way. Common incorrect answers referred to the addition of the amplitudes. It was expected that candidates would state that the resultant displacement was equal to the sum of the displacements of the individual waves.
		There is a constant / fixed phase difference (between the waves)	B1	Allow constant / fixed phase relationship Ignore 'the frequency / wavelength is the same' Not the same phase difference Not zero phase difference Examiner's Comments A good proportion of candidates scored this mark. A common error was just stating frequency and wavelength were the same.
		Total	2	
3 8		$\begin{aligned} & \left(V_{\mathrm{R}}=2.7 \quad \text { or }(\text { current }=) 0.018(\mathrm{~A})\right. \\ & (\mathrm{V}) \\ & \left(\text { ratio }=\frac{0.018 \times 1.8}{0.018 \times 2.7}\right) \\ & \text { ratio }=0.67 \end{aligned}$	C1	Note the mark can be scored on circuit diagram Note values of powers are: 0.0324 W and 0.0486 W Allow 2/3; Not 0.66 (rounding error)
		Total	2	
3 9	a	$\begin{aligned} & E=y \text {-intercept } \\ & r=- \text { gradient } \end{aligned}$	B1 B1	E must be the subject R must be the subject Do not accept gradient $=-r$
	b	$\left(R=\frac{5.68}{0.025}=\right) 230 \Omega$	A1	Allow 227
		$\begin{aligned} & \left(\frac{5.68^{2}}{(\mathrm{c})(\mathrm{i})} \text { or } 0.025^{2} \times(\mathrm{c})(\mathrm{i}) \text { or } 0.025 \times 5.68=\right. \\ & 0.14 \times 300=42(\mathrm{~J}) \end{aligned}$	C1 A1	Allow ECF from (c) (i) 0.140 or 0.142 or 0.144 Allow 43 (J) (for 0.142 or 0.144)
		$\begin{array}{\|l\|l} \hline \text { ii } & \left(Q=\frac{(c)(\text { (ii) }}{5.68} \text { or } 0.025 \times 300=\right) 7.4 \text { or } 7.5 \\ \text { i } & \text { C } \\ \hline \end{array}$	B1	Allow ECF from (c) (ii)

4.3 Electrical Circuits

4.3 Electrical Circuits

				The voltmeter reading is. 7.2 V . Determine r. p -d acoss X and Y are the sane accorling to kirochurff's $2^{\text {nd }}$ law. At.7.2V, $I_{x}=0.50 \mathrm{~A}, I_{r}=0.36 \mathrm{~A}$ Fig. 6.1 The candidate has clearly state the method and at the top stated that $I r=2.4 \mathrm{~V}$. The candidate has then clearly read the currents for each component at a potential difference of 7.2 V to then determine the total current. There is then a correct calculation to determine the internal resistance r.			
		Total	3				
2		Any three from: - Total resistance of the lamps increases by a factor of 1.5. - Resistance of each lamp increases with current. - Resistance increases because of increased temperature. - Lamps are non-ohmic components.	B1×3				
		Total	3				
3		$\left(V_{\mathrm{A}}=\right) 6.0(\mathrm{~V}) \quad \text { or } \quad\left(R_{\mathrm{A}}=\right) 30(\Omega)$ For parallel lamps, any one from: $\begin{aligned} & \left(V_{\\|}=\right) 2.0(\mathrm{~V}) \text { or }(I=) 0.10(\mathrm{~A}) \text { or }(R \mathrm{~L} \\ & =) 20(\Omega) \\ & \text { or }\left(R_{\\|}=\right) 10(\Omega) \end{aligned}$	C1 C1 A1	Not $R_{\\|}=15(\Omega)$; this is XP			

4.3 Electrical Circuits

				their earlier answer in (a) to explain why the circuit shown in Fig. 27.2 did not work. It was only a small number of candidates who realised that the LED was in reverse bias and the solution would have been to either swap the terminals of the LED or the cell. Most candidates did not appreciate that the p.d. had to be greater than 2.6 V for the LED to emit light. A very small number of candidates opted to use two 1.5 V cells in series. Some candidates thought that swapping the resistor and the LED would solve the problem because then the 'resistor will not prevent the current from reaching the LED'.
		Total	3	
	a	$\begin{aligned} & \text { current }=\frac{0.060}{2.4} \text { or current }=0.025(\mathrm{~A}) \\ & R=\frac{6.0-2.4}{0.025} \\ & R=140(\Omega) \end{aligned}$	C1 C1 A1	Note answer to 3 sf is 144Ω
	b	$\begin{aligned} & I=\text { Anev and } A=2.0 \times 10^{-6}\left(\mathrm{~m}^{2}\right) \\ & 0.025=2.0 \times 10^{-6} \times 1.4 \times 10^{25} \times 1.60 \\ & \times 10^{-19} \times v \end{aligned}$	C1 C1 A1	Allow any subject Possible ecf
	c	The current is constant, therefore $v \propto$ n^{-1}. The mean drift velocity is therefore smaller.	M1 A1	
		Total	8	
		p.d. across resistor $=1.50-0.62=$ 0.88 (V) current $=0.88 / 120=7.33 \ldots \times 10^{-3}$ (A) $\begin{aligned} & \text { power }=V I=1.50 \times 7.33 \times 10^{-3}=1.1 \\ & \times 10^{-2}(\mathrm{~W}) \end{aligned}$	C1 C1 A1	
		Total	3	
		In darkness LDR has more resistance / p.d. across LDR is large or In light LDR has less resistance / p.d. across LDR is small Clear idea that when the LED is on, this will force the p.d. across LED / LDR to decrease, forcing the LED to switch off (ORA) (The cycle of LED switching on and off is repeated)	B1	Note the explanation must be in terms of p.d. / potential divider. Ignore current

		A sensible suggestion, e.g. Point the LED away from the LDR / increase distance (between LED and LDR) / insert a card between (LED and LDR)	B1	

$\left|\left\lvert\, \begin{array}{l}3.0 \mathrm{~V} \text { to } 3.4 \mathrm{~V}: R \text { decreases } \\ \begin{array}{l}\text { Justification of a B1 point in terms of } \\ R=\mathrm{V} / \mathrm{I} \\ \text { For example to show: }\end{array}\end{array}\right.\right.$

- R is infinite: $R=2.0 / 0=\infty$
- $\quad R$ decreases: R calculated once and has $R=\infty$, or R calculated twice

Allow this B1 mark for a clearly drawn circuit with correct symbols for
variable resistor / (terminals of the)
cell

Measure current and p.d./voltage across variable resistor / cell

Correct description of how to get multiple readings (of current or p.d) E.g. change the resistance of the variable resistor / use different value resistors, etc.
($E=V+I r$)
Plot a graph of V against I and the the cell, variable resistor, voltmeter and ammeter.
Allow a battery symbol instead of symbol for a cell

Allow 'terminal p.d.' for p.d. across the cell
Allow 'measure I and V if the circuit is correct
Allow 'measure voltmeter and ammeter readings' if the circuit is correct
Possible ECF for incorrect symbol for variable resistor

Examiner's Comments

Candidates were familiar with this experiment and some gave answers using the bullet points as prompts. Although most candidates scored two or more marks, there were some missed opportunities. The most common error was the incorrect symbol for the variable resistor in the circuit. It was either a thermistor symbol or a hybrid. Some candidates also lost a mark for not clearly specifying the graph being plotted. Instead of 'Plot a graph of V against I and determine the gradient which is equal to the internal resistance', examiners were faced with less robust statements such as 'Plot a graph and find the gradient' or 'Use the data to draw a graph and use $E=V+$ Ir to calculate r '.

Most candidates scored two or more marks, but examiners felt that there were many missed opportunities here. The most common error was to quote the resistance of the LED as zero when it was not conducting. Sadly, this was often supported by the calculation $R=V / 0$ $=0$. A number of candidates attributed the decrease in the resistance
beyond 2.6 V to the 'increase in the temperature of the $L E D$ '. The straight $=0$. A number of candidates attributed the decrease in the resistance
beyond 2.6 V to the 'increase in the temperature of the LED'. The straight line section of the graph for the last voltage range led many candidates to quote Ohm's law and the statement that 'the resistance of the LED is constant'. A very small number of candidates opted to write about a bulb or a lamp. Top-end candidates effortlessly used R = VII to calculate the resistance at various p.ds and draw sensible conclusions from their calculations.
Not R is constant (because it is a straight line)
Not $R=$ gradient $^{-1}$
Ignore powers of 10 and units
Note: V and $/$ values within ± 1 small square

Examiner's Comments

 of the LED is constant. A very small number of candidates opted toAllow 'slow decrease in R ' -

4.3 Electrical Circuits

			the two parallel resistors (40Ω). The total e.m.f. in the circuit is 2.7 V and the total resistance is 73Ω. Those using a total e.m.f. of 5.7 V ended up with the incorrect current of 0.078 A ; two marks were awarded for this answer. A small number of candidates tried to calculate the current using either using 1.5 V or 4.2 V or 33Ω.
	Any two from: The current decreases up to 1.5 V The current is zero at 1.5 V The current changes direction / is negative when < 1.5 V The current increases below 1.5 V	B1×2	Allow 'current is zero when the e.m.f.s are the same' Examiner's Comment Most of the answers here showed poor understanding of the circuit in Fig. 18.1. Nothing could be awarded for vague answers such as 'current decreases because $I \propto V$ or 'e.m.f. decreases so current decreases'. The current decreases as the e.m.f. of the supply approaches 1.5 V , at 1.5 V the current is zero, the direction of the current reverses and its magnitude increases when the e.m.f. of the supply gets below 1.5 V. About a quarter of the candidates gave credible answers.
b	Level 3 (5-6 marks) Clear description including a reasonable estimate of r and clear limitations There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some description with an attempt to estimate r and some limitations There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Limited description There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	B1×6	Use level of response annotations in RM Assessor, e.g. L2 for 4 marks, L2 for 3 marks, etc. Indicative scientific points may include: Description and estimation - Correct circuit with (variable) resistor, ammeter and voltmeter - Correct symbols used for all the components - $\quad R$ changed to get different values for P - $\quad R=V / I$ (using ammeter and voltmeter readings) or R measured directly using an ohmmeter with the variable resistor isolated from the circuit or R read directly from a resistance box - Power calculated using $P=V^{2} / R$ or $P=V I$ or $P=I^{2} R$ - The value of r is between 1.0 to 3.0Ω - A smooth curve drawn on Fig. 18.2 (to determine r) - A better approximation from sketched graph or r is between 1.5 and 2.7Ω - Any attempt at using $E=V+I r$, with or without the power equation(s) to determine r - even if the value is incorrect Limitations - 'More data' required - Data point necessary at $R=2.0 \Omega$ / More data (points) needed between 1 to 3Ω - No evidence of averaging / Error bars necessary (for both P and R values) Examiner's Comment This was a level of response (LoR) question had three ingredients drawing a viable circuit diagram that would enable the data shown in

| | | |
| :--- | :--- | :--- | :--- | :--- |

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& others assumed the positions and explained how the resistances could be determined. Many candidates made the task more difficult than necessary. For example it was intended that once terminals \(\mathbf{C}\) and \(\mathbf{D}\) had been identified, \(\mathbf{C}\) could only be lower left and not lower right, and hence the positions of \(\mathbf{A}\) and \(\mathbf{B}\) were also identified. A very common circuit used to determine the resistances placed the supply between \(\mathbf{A}\) and \(\mathbf{C}\) with the given resistor \(\mathbf{R}\) between \(\mathbf{B}\) and \(\mathbf{D}\), leading to calculations requiring combinations of resistors in series and parallel. Many ignored the limiting resistor \(\mathbf{R}\) and probed the box without it, a few stating that the current between \(\mathbf{C}\) and \(\mathbf{D}\) would be zero with the supply across CD. Some answers lacked any circuit diagram and some \(15 \%\) failed to attempt the question. Weaker candidates were confused as to when the resistors were connected in series or in parallel. Generally, the responses were clearer in terms of planning than identifying. Comments such as and then you can work out the arrangement of the resistors were common without showing how this could be done. A small number of candidates introduced a voltmeter and others wanted to position the ammeter 'inside' the box. \\
\hline \& b \& \(\xrightarrow{+}\) \& B1 \& two arrows needed not across resistor; allow a surrounding circle with arrows outside circle \\
\hline \& \& \begin{tabular}{l}
1 from graph 3.0 (k \(\Omega\))
\[
\begin{aligned}
\& I=4.0 / 3.0=1.33 \times 10^{-3} \mathrm{~A} \text { or } \\
\& R=2.0 / 4.0 \times 3.0 \times 10^{3} \\
\& R=(6.0-4.0) / 1.33 \times 10^{-3} \\
\& =1.5 \times 10^{3}(\Omega)
\end{aligned}
\] \\
2 at \(2.4 \vee R_{\text {LDR }}=1.0 \mathrm{k} \Omega\) \\
giving \(2.5\left(\mathrm{~W} \mathrm{~m}^{-2}\right)\)
\end{tabular} \& B1
C1
A1

M1

A1 \& | allow $3.1 \pm 0.1(\mathrm{k} \Omega)$ |
| :--- |
| accept 1.3 mA ; accept potential divider argument |
| allow $1.5 \mathrm{k} \Omega$; |
| special case: using 2.4 V in place of 4.0 V gives $\mathrm{R}=4.5 \mathrm{k} \Omega$; give 1 |
| mark out of 2 |
| ecf (b)(ii); allow potential divider or $\mathrm{I}=2.4 \mathrm{~mA} \text {; }$ |
| for special case: $R_{L D R}=9.0 \mathrm{k} \Omega$; |
| give 1 mark out of 2 |
| allow 2.4 to $2.6 \mathrm{~W} \mathrm{~m}^{-2}$ |
| N.B. remember to record a mark out of |
| 5 here |
| Examiner's Comments |
| More than half of the candidates knew the correct circuit symbol for an LDR. The most common error was to draw an LED. More candidates used a potential divider approach to solve the problem than calculated the current in the circuit; many gaining full marks. Those who misread the question and reversed the voltages required to switch the lamp on and off were given some credit for their answers. |

\hline \& \& Total \& 12 \&

\hline \& \& $$
R=2.0+8.0=10(\Omega)
$$

$$
\begin{array}{ll}
(I=1.2 / 10) ; & I=0.12(\mathrm{~A}) \\
(1.5=1.2+ & r=2.5(\Omega) \\
0.12 \mathrm{r}) ; & r
\end{array}
$$ \& C1

C1

A1 \& | Allow other correct methods |
| :--- |
| Allow 2 marks for $4.5(\Omega) ; R=18 \Omega$ with $I=0.067(\mathrm{~A})$ |
| Examiner's Comments |
| This question required careful examination of a series circuit. The answer was very much dependent on knowing that 1.2 V was the p.d. |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \& \& \begin{tabular}{l}
across the \(2.0 \Omega\) and half of the resistance wire. Using total resistance other than \(10.0 \Omega\) led to incorrect value for the internal resistance. Less than about a third of the candidates secured full marks. Some of the most frequent difficulties were: \\
- Assuming the p.d. across the \(2.0 \Omega\) resistor was 1.2 V . \\
- Using 1.5 V as the terminal p.d. rather than 1.2 V . \\
- Experiencing problems rearranging the equation \(E=V+I r\).
\end{tabular} \\
\hline \& \begin{tabular}{l}
As \(d\) increases the (total) resistance (of the circuit) increases (ORA) and therefore the current / / decreases (ORA) \\
Any one from: \\
- Explanation of \(V\) increasing in terms of \(V+I r=E\) or \(V+V_{\mathrm{r}}=\) 1.5 or \(V=E\) - lost volts \\
- Explanation of \(V\) increasing in terms of potential divider \\
- Analysis showing \(V \approx 0.7 \mathrm{~V}\) when \(d=0\) or \(V \approx 1.3 \mathrm{~V}\) when \(d=1.0 \mathrm{~m}\) or any other value of \(V\) for a given \(d\)
\end{tabular} \& M1
A1

B1 \& | Allow 'As length (of wire) increases resistance increases' (ORA) |
| :--- |
| Allow 'lost volts / p.d across r / Ir decreases, so V increases' |
| Examiner's Comments |
| The question required an explanation in terms of the current in the circuit as the distance d increased. Many candidates realised that the increase in the length of the resistance wire meant an increase in the total resistance of the circuit and hence, a smaller current in the circuit. Some went one step further and correctly concluded that V increases as the p.d. across the internal resistance decreases. A significant number of candidates either described the variation V with d without any explanation or guessed the physics. No credit could be given for answers such as 'the graph gets less steep' and 'the current changes because the electrons have to travel a longer length'. |

\hline \& Total \& 6 \&

\hline \& | Please refer to point 10 of the marking instructions of this mark scheme for guidance on how to mark this question. |
| :--- |
| Level 3 (5-6 marks) |
| Typically, circuit including meters is correctly drawn on Fig. 4.2(b). |
| Explanation of action of both circuits is correct. |
| Presence of 100Ω explained. |
| There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. |
| Level 2 (3-4 marks) |
| Typically, circuit including meters is correctly drawn on Fig. 4.2(b). |
| Action of only Fig. 4.2(b) circuit explained correctly. |
| Purpose of 100Ω stated but value not | \& B1 \& | Indicative scientific points may include |
| :--- |
| circuit diagram |
| 1. resistor and LED in series |
| 2. ammeter in series and voltmeter in parallel with LED |
| 3. correct symbols for LED, ammeter, voltmeter, etc. |
| 4. correct polarity of LED |
| action of circuit |
| 1. circuit completed on Fig. 4.2(b) |
| 2. voltage across $\mathbf{A B}$ can be varied from 0 to 6 V |
| 3. some justification; e.g. potential divider circuit |
| 4. in Fig. 4.2(a) circuit voltage only varies from 6 to about 5.6 V as resistance can only be varied from 110 to 100Ω (+ LED)/AW |
| presence of 100Ω resistor |

\hline
\end{tabular}

	justified. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Typically, circuit including meters is correctly drawn on Fig. 4.2(a). No correct explanations or basic information on the action of circuit or presence of 100Ω resistor. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear 0 marks No response or no response worthy of credit.		1. the current in the circuit is limited by the resistor so ensures LED cannot burn out 2. at 6 V the potential divider across $\mathbf{A B}$ gives 2 V across LED as its resistance is about 50Ω / AW
	Total	6	
	Level 3 (5-6 marks) Clear explanation, some description and both resistance values correct There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some explanation, limited or no description and both resistance values correct OR Clear explanation, limited or no description and calculations mostly correct / one correct calculation OR Clear explanation, some description and no calculations There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Some explanation OR Some description OR Some calculation	$\begin{gathered} B 1 \times \\ 6 \end{gathered}$	Indicative scientific points may include: Explanation of trace - The 'trace' is because of light reaching and not reaching LDR - Resistance of LDR varies with (intensity) of light - In light - resistance of LDR is low - p.d. across LDR is low - p.d across resistor (or V) is high - current in circuit is large - In darkness - resistance of LDR is high - p.d. across LDR is high - p.d across resistor (or V) is low - current in circuit is small - $V_{\text {max }}=4.0 \mathrm{~V} ; V_{\text {min }}=2.0 \mathrm{~V}$ - Potential divider equation quoted - Substitution into potential divider equation Description of determining frequency - Time between pulses is constant because of constant speed - \quad Time between pulses $=0.4$ (s) - $f=1 / T$ - frequency $=2.5(\mathrm{~Hz})$

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

0 marks

No response or no response worthy of credit

Calculations

- Resistance of LDR is $150(\Omega)$ in light
- Resistance of LDR is $1500(\Omega)$ in darkness

Examiner's Comments

This was one of the two LoR questions. It required understanding of potential dividers, light-dependent resistor and rotation frequency of a spinning plate.

Examiners expect varied responses, and two very dissimilar answers can score comparable marks as long as the criteria set out in the answers' section of the marking scheme are met. Level 3 answers had the correct maximum and minimum resistance values of the LDR, a decent description and explanation of the trace shown in Fig. 17.2, and an outline of how the frequency of the spinning plate was determined. As mentioned earlier, eclectic answers are inevitable verbose and concise answers can be at Level 3.

In Level 2 answers there were generally missed opportunities. Halfdone calculation and descriptions either with some errors or lacking in depth. Level 1 answers had some elements of calculations or descriptions.

The two exemplars below, illustrate a Level 3 response and a Level 1 response.

Exemplar 7

			marks. The description of the variation of the resistance of the LDR, the circuit current and the potential difference across the fixed resistor is perfect. The calculations of the LDR resistances are nicely embedded into the general explanation. The calculation of the frequency is all correct. This is a model answer for 6 marks. Compare and contrast this with the Level 1 response below. Exemplar 8 When the light shines through the hole onto the LDR, the resitance decreases, causing the pd across the fived resistor to increase, and vice vessa when the Fanhistabonaxy, light is blocked again. Determine the frequenay by seaing how long the plate takes to rotate, so from pa inerease to pd increase, 0.4 seconds $\begin{aligned} & \text { frequency }=\frac{1}{T} \\ & \text { frequency }=2.5 \end{aligned}$ This is a Level 1 response from an E-grade candidate. The description of the variation of the resistance of the LDR is correct. However, there are no calculations of the resistance of the LDR, as required in the question. Hence, a significant part of the question has been omitted. According to the marking criteria, this could only score Level 1. The examiner credited 2 marks for this response.
	Total	6	
6	* Level 3 (5-6 marks) Circuit including meter is correctly drawn. Explanation of action of circuit is correct. Concept of sensitivity understood and 750Ω justified (4 marks) LDR wrong symbol or value of resistor not fully justified (5 marks). There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Circuit has correct symbol for LDR Action of circuit explanation limited 750Ω stated but not justified Concept of sensitivity (4 marks)	B1	circuit diagram 1. resistor and LDR in series 2. ammeter in series or voltmeter in parallel with resistor 3. correct symbols for LDR, ammeter, voltmeter, etc. action of circuit 1. when light intensity increases R of LDR falls 2. so I in circuit increases or V across resistor increases or V across LDR decreases (meter reading increases). meter and sensitivity 1. need the largest change in current or voltage for a given change in light intensity

	Any point omitted or incorrect (3 marks). There is a line of reasoning presented with some structure. The information presented is in the mostpart relevant and supported by some evidence. Level 1 (1-2 marks) Correct symbol for LDR (1 mark) Action of circuit only addresses point (1 mark) Sensitivity poorly addressed (1 mark) (Maximum 2 marks) The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.		2. choose resistor of 750Ω to give the largest change on the meter or need a meter which can display small changes in value of current or voltage.
	Total	6	
6 7	* Level 3 (5-6 marks) Explanation is complete with E1, 2 and 3 For calculation expect C3 At least two limitations mentioned. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Expect two points from E1, 2 and 3 Expect either C1 or C2 for the calculations Expect at least one limitation Limitation identified but calculations are inappropriate. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Expect at least one point from explanation Expect C1 and an attempt at C2 Limitations given are inappropriate.	B1	Explanation (E) 1. Total resistance decreases as temperature increases (allow reverse argument) 2. Current in circuit increases as temperature increases or p.d. is in the ratio of the resistance values 3. Therefore, the p.d. across resistor increases or p.d. across thermistor decreases Calculations (C) 1. $I=V / R$ used to show current increases as temperature increases 2. Potential divider equation (or $I=V / R$ and $R=\mathrm{R}_{1}+R_{2}$) used to calculate the voltmeter reading at either $200^{\circ} \mathrm{C}$ or $300^{\circ} \mathrm{C}$ - $V_{300}=6.0 \times 25 /(25+500)=0.29 \mathrm{~V}$ - $\left.V_{200}=6.0 \times 60 /(60+500)=0.64 \mathrm{~V}\right)$ 3. Potential divider equation used to calculate the voltmeter reading at both $200^{\circ} \mathrm{C}$ and $300^{\circ} \mathrm{C}$ Limitation (L) 1. The change in resistance is small when resistance of thermistor changes from $200^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$ 2. Change in voltmeter reading is too small over this range 3. Non-linear change of resistance with temperature

7	i	Micrometer Repeat readings in different directions/along wire/different wires and average	B1	Allow calliper Not vernier scale Examiner's Comments Most candidates were able to identify a suitable measuring instrument such as a micrometer. To score the second mark candidates were expected to explain the purpose of repeating readings that the reading would be repeated in different directions or along the wire and the mean or average diameter would be determined. to assure that the outcome is precise.
	ii	$\begin{aligned} & A=\frac{\pi \times\left(0.12 \times 10^{-3}\right)^{2}}{4}=1.13 \times 10^{-8} \quad \text { OR } \\ & \rho=\frac{1.86 \times A}{21} \\ & \rho=\frac{17 \times 1.86 \times 1.1 \times 10^{-8}}{21} \\ & \rho=1.7 \times 10^{-8}(\Omega \mathrm{~m}) \end{aligned}$	C1	Note ρ must be the subject Allow 2 marks for 1.0×10^{-9} (factor of 17 omitted) Allow 2 marks for 6.8×10^{-8} (diameter used instead of radius) Allow 2 marks for 0.017 (POT omitted) Examiner's Comments A very large number candidates did not take into account that the resistance of the cable was the resistance of 17 wires in parallel. Many candidates did not clearly show their working. Good candidates calculated the cross-sectional area of one wire and then correctly rearranged the resistivity equation from the data booklet. Some lower ability candidates had difficulty in calculating the crosssectional area of the wire and there were often power of ten errors. Exemplar 6 The student measures the resistance R of the whole cable as $1.86 \pm 0.02 \Omega$. The length L of the cable is $21.0 \pm 0.1 \mathrm{~m}$. (ii) Determine the resistivity ρ of copper. $\begin{aligned} \rho=\frac{R A}{L} & =\frac{1.86 \times 1.92 \times 10^{-7}}{21} \\ & =1.7 \times 10^{-8} \Omega \Omega \mathrm{~m} \end{aligned}$ $\rho=1.7 \times 10^{-8}$

				because d was smaller or $R \propto 1 / d^{2}$. On most scripts, it was difficult to follow if the resistance was the actual one or the calculated one.
		Total	9	
7	i	Line of best fit drawn gradient $=2.8$	B1	Expect the extrapolated line to have a y-intercept in the range 0.60 to 0.85 and at least one data point on each side of the line Allow gradient of line in the range 2.60 to 3.00 Examiner's Comments In (c)(i), the lines of best fit were generally very good, as were the gradient calculations with most candidates getting values in the range 2.60 to 3.00 . Only a small number of candidates calculated the inverse of the gradient.
	ii	$\begin{align*} & E=I(r+\mathrm{R}) \text { and } R=\rho L / A \\ & \frac{1}{I}=\frac{r}{E}+\frac{\rho}{A E} L \stackrel{\text { and comparison with } y}{=m x} \tag{to}\\ & \begin{array}{l} \text { + c leads to } \\ \text { gradient } \end{array} \quad \frac{\rho}{A E} \text {) } \end{align*}$	C1 A1	Allow $E=V+I R$ and $R=\rho L / A$ Examiner's Comments Most candidates struggled with (c)(ii). Less than 1 in 10 candidates successfully used the equations $E=V+I r$ and $R=\frac{\rho L}{A}$ derive the expression $\frac{1}{I}=\frac{\rho}{A E} L+\frac{r}{E}$, and then identified the gradient as $\frac{\rho}{A E} \quad \text { by }$ comparison with the equation for a straight-line $y=m x+c$.
		$\begin{aligned} & (\rho=\text { gradient } \times A E) \\ & \rho=2.8 \times \pi \times\left(0.19 \times 10^{-3}\right)^{2} \times 1.5 \\ & \rho=4.8 \times 10^{-7}(\Omega \mathrm{~m}) \end{aligned}$	C1 A1	Possible ECF from (i) Note not using $A=\pi r^{2}$ is wrong physics (XP) Allow 1 mark for 1.9×10^{-6}, diameter used instead of radius Examiner's Comments Most candidates in (c)(iii) did exceptionally well to calculate the resistivity using the equation for the gradient. Calculations were generally well-structured, and the final answer showed good use of powers of ten and significant figures.
		The graph / points just shift horizontally (AW) The gradient is unchanged (and ρ will be the same)	B1 B1	Allow shifted to the right or left / 'systematic error' / zero error / change in length stays the same / 'no change in vertical values' Examiner's Comments Finally, (c)(iv) provided good discrimination with many of the top end candidates realising the gradient of the line was unaffected, the line was just shifted horizontally. 'Systematic error' and 'zero error' were allowed as alternative answers for the horizontal translation of the line.

				There were some missed opportunities, with some candidates making the following mistakes. - In (c)(ii), ignoring the internal resistance r of the cell shown in the circuit of Fig. $\mathbf{1 8 . 1}$ to get the wrong expression $\frac{1}{I}=\frac{\rho}{A E} L$ - In (c)(iii), a small number of candidates either used 0.38 mm as the radius of the wire to get a resistivity of $1.9 \times 10^{-6} \Omega \mathrm{~m}$ or forgot to convert the millimetres into metres to get a value of $0.48 \Omega \mathrm{~m}$. - In (c)(iv), a significant number of low-end candidates, mentioned that resistivity of the wire did not depend on its physical dimensions, and therefore the resistivity value calculated will be the same. There was no reasoning in terms of gradient $=\frac{\rho}{A E}$
		Total	8	
7		$\begin{aligned} & \frac{1}{R}=\frac{1}{60}+\frac{1}{60} \text { or } \frac{1}{R}=\frac{1}{60}+\frac{1}{60}+\frac{1}{60} \text { or } R=\frac{60}{n} \text { or } R= \\ & 30 \Omega+20 \Omega=50 \Omega \end{aligned}$	M1 A1	Examiner's Comments This question was generally answered well although, a number of candidates did not take due care when writing the mathematical expressions. Exemplar 6 4 (a) Fig. 4 shows a circuit with five identical 60Ω resistors. The battery has electromotive force The candidate's response is logically structured showing the effective resistance of the two combinations of resistors and then clearly showing the adding of the two effective resistances together. This answer gained both marks.
		$\frac{30}{50} \times 9 \text { or } I=\frac{9}{50}=0.18 \mathrm{~A}$ 5.4 V	C1 A1	Examiner's Comments For this question, many candidates incorrectly stated that the potential difference was 4.5 V . Other candidates tried determining the current

